Mean Square Numerical Methods for Initial Value Random Differential Equations

نویسندگان

  • Magdy A. El-Tawil
  • Mohammed A. Sohaly
چکیده

Randomness may exist in the initial value or in the differential operator or both. In [1,2], the authors discussed the general order conditions and a global convergence proof is given for stochastic Runge-Kutta methods applied to stochastic ordinary differential equations (SODEs) of Stratonovich type. In [3,4], the authors discussed the random Euler method and the conditions for the mean square convergence of this problem. In [5], the authors considered a very simple adaptive algorithm based on controlling only the drift component of a time step. Platen, E. [6] discussed discrete time strong and weak approximation methods that are suitable for different applications. Other numerical methods are discussed in [7-12]. In this paper the random Euler and random RungeKutta of the second order methods are used to obtain an approximate solution for Equation (1.1). This paper is organized as follows. In Section 2, some important preliminaries are discussed. In Section 3, the existence and uniqueness of the solution of random differential initial value problem is discussed and the convergence of random Euler and random Runge-Kutta of the second order methods is discussed. In Section 4, the statistical properties for the exact and numerical solutions are studied. Section 5 presents the solution of some numerical examples of first order random differential equations using random Euler and random Runge-Kutta of the second order methods showing the convergence of the numerical solutions to the exact ones (if possible). The general conclusions are presented in the end section.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Solving the liner quadratic differential equations with constant coefficients using Taylor series with step size h

In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011